3.860 \(\int \frac{1}{x^4 \left (a+b x^2+c x^4\right )} \, dx\)

Optimal. Leaf size=196 \[ \frac{\sqrt{c} \left (\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}+b\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{\sqrt{2} a^2 \sqrt{b-\sqrt{b^2-4 a c}}}+\frac{\sqrt{c} \left (b-\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{\sqrt{b^2-4 a c}+b}}\right )}{\sqrt{2} a^2 \sqrt{\sqrt{b^2-4 a c}+b}}+\frac{b}{a^2 x}-\frac{1}{3 a x^3} \]

[Out]

-1/(3*a*x^3) + b/(a^2*x) + (Sqrt[c]*(b + (b^2 - 2*a*c)/Sqrt[b^2 - 4*a*c])*ArcTan
[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*a^2*Sqrt[b - Sqrt[b^
2 - 4*a*c]]) + (Sqrt[c]*(b - (b^2 - 2*a*c)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sq
rt[c]*x)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*a^2*Sqrt[b + Sqrt[b^2 - 4*a*c]])

_______________________________________________________________________________________

Rubi [A]  time = 0.987949, antiderivative size = 196, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 4, integrand size = 18, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.222 \[ \frac{\sqrt{c} \left (\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}+b\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{\sqrt{2} a^2 \sqrt{b-\sqrt{b^2-4 a c}}}+\frac{\sqrt{c} \left (b-\frac{b^2-2 a c}{\sqrt{b^2-4 a c}}\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{\sqrt{b^2-4 a c}+b}}\right )}{\sqrt{2} a^2 \sqrt{\sqrt{b^2-4 a c}+b}}+\frac{b}{a^2 x}-\frac{1}{3 a x^3} \]

Antiderivative was successfully verified.

[In]  Int[1/(x^4*(a + b*x^2 + c*x^4)),x]

[Out]

-1/(3*a*x^3) + b/(a^2*x) + (Sqrt[c]*(b + (b^2 - 2*a*c)/Sqrt[b^2 - 4*a*c])*ArcTan
[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*a^2*Sqrt[b - Sqrt[b^
2 - 4*a*c]]) + (Sqrt[c]*(b - (b^2 - 2*a*c)/Sqrt[b^2 - 4*a*c])*ArcTan[(Sqrt[2]*Sq
rt[c]*x)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(Sqrt[2]*a^2*Sqrt[b + Sqrt[b^2 - 4*a*c]])

_______________________________________________________________________________________

Rubi in Sympy [A]  time = 80.5926, size = 207, normalized size = 1.06 \[ - \frac{1}{3 a x^{3}} + \frac{b}{a^{2} x} - \frac{\sqrt{2} \sqrt{c} \left (- 2 a c + b^{2} - b \sqrt{- 4 a c + b^{2}}\right ) \operatorname{atan}{\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b + \sqrt{- 4 a c + b^{2}}}} \right )}}{2 a^{2} \sqrt{b + \sqrt{- 4 a c + b^{2}}} \sqrt{- 4 a c + b^{2}}} + \frac{\sqrt{2} \sqrt{c} \left (- 2 a c + b^{2} + b \sqrt{- 4 a c + b^{2}}\right ) \operatorname{atan}{\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b - \sqrt{- 4 a c + b^{2}}}} \right )}}{2 a^{2} \sqrt{b - \sqrt{- 4 a c + b^{2}}} \sqrt{- 4 a c + b^{2}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  rubi_integrate(1/x**4/(c*x**4+b*x**2+a),x)

[Out]

-1/(3*a*x**3) + b/(a**2*x) - sqrt(2)*sqrt(c)*(-2*a*c + b**2 - b*sqrt(-4*a*c + b*
*2))*atan(sqrt(2)*sqrt(c)*x/sqrt(b + sqrt(-4*a*c + b**2)))/(2*a**2*sqrt(b + sqrt
(-4*a*c + b**2))*sqrt(-4*a*c + b**2)) + sqrt(2)*sqrt(c)*(-2*a*c + b**2 + b*sqrt(
-4*a*c + b**2))*atan(sqrt(2)*sqrt(c)*x/sqrt(b - sqrt(-4*a*c + b**2)))/(2*a**2*sq
rt(b - sqrt(-4*a*c + b**2))*sqrt(-4*a*c + b**2))

_______________________________________________________________________________________

Mathematica [A]  time = 0.245223, size = 216, normalized size = 1.1 \[ \frac{\frac{3 \sqrt{2} \sqrt{c} \left (b \sqrt{b^2-4 a c}-2 a c+b^2\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{b-\sqrt{b^2-4 a c}}}\right )}{\sqrt{b^2-4 a c} \sqrt{b-\sqrt{b^2-4 a c}}}+\frac{3 \sqrt{2} \sqrt{c} \left (b \sqrt{b^2-4 a c}+2 a c-b^2\right ) \tan ^{-1}\left (\frac{\sqrt{2} \sqrt{c} x}{\sqrt{\sqrt{b^2-4 a c}+b}}\right )}{\sqrt{b^2-4 a c} \sqrt{\sqrt{b^2-4 a c}+b}}-\frac{2 a}{x^3}+\frac{6 b}{x}}{6 a^2} \]

Antiderivative was successfully verified.

[In]  Integrate[1/(x^4*(a + b*x^2 + c*x^4)),x]

[Out]

((-2*a)/x^3 + (6*b)/x + (3*Sqrt[2]*Sqrt[c]*(b^2 - 2*a*c + b*Sqrt[b^2 - 4*a*c])*A
rcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b - Sqrt[b^2 - 4*a*c]]])/(Sqrt[b^2 - 4*a*c]*Sqrt[
b - Sqrt[b^2 - 4*a*c]]) + (3*Sqrt[2]*Sqrt[c]*(-b^2 + 2*a*c + b*Sqrt[b^2 - 4*a*c]
)*ArcTan[(Sqrt[2]*Sqrt[c]*x)/Sqrt[b + Sqrt[b^2 - 4*a*c]]])/(Sqrt[b^2 - 4*a*c]*Sq
rt[b + Sqrt[b^2 - 4*a*c]]))/(6*a^2)

_______________________________________________________________________________________

Maple [B]  time = 0.027, size = 368, normalized size = 1.9 \[{\frac{c\sqrt{2}b}{2\,{a}^{2}}\arctan \left ({cx\sqrt{2}{\frac{1}{\sqrt{ \left ( b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}} \right ){\frac{1}{\sqrt{ \left ( b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}}+{\frac{{c}^{2}\sqrt{2}}{a}\arctan \left ({cx\sqrt{2}{\frac{1}{\sqrt{ \left ( b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}} \right ){\frac{1}{\sqrt{-4\,ac+{b}^{2}}}}{\frac{1}{\sqrt{ \left ( b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}}-{\frac{c\sqrt{2}{b}^{2}}{2\,{a}^{2}}\arctan \left ({cx\sqrt{2}{\frac{1}{\sqrt{ \left ( b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}} \right ){\frac{1}{\sqrt{-4\,ac+{b}^{2}}}}{\frac{1}{\sqrt{ \left ( b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}}-{\frac{c\sqrt{2}b}{2\,{a}^{2}}{\it Artanh} \left ({cx\sqrt{2}{\frac{1}{\sqrt{ \left ( -b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}} \right ){\frac{1}{\sqrt{ \left ( -b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}}+{\frac{{c}^{2}\sqrt{2}}{a}{\it Artanh} \left ({cx\sqrt{2}{\frac{1}{\sqrt{ \left ( -b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}} \right ){\frac{1}{\sqrt{-4\,ac+{b}^{2}}}}{\frac{1}{\sqrt{ \left ( -b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}}-{\frac{c\sqrt{2}{b}^{2}}{2\,{a}^{2}}{\it Artanh} \left ({cx\sqrt{2}{\frac{1}{\sqrt{ \left ( -b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}} \right ){\frac{1}{\sqrt{-4\,ac+{b}^{2}}}}{\frac{1}{\sqrt{ \left ( -b+\sqrt{-4\,ac+{b}^{2}} \right ) c}}}}-{\frac{1}{3\,a{x}^{3}}}+{\frac{b}{{a}^{2}x}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  int(1/x^4/(c*x^4+b*x^2+a),x)

[Out]

1/2/a^2*c*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x*2^(1/2)/((b+(-4*a*
c+b^2)^(1/2))*c)^(1/2))*b+1/a*c^2/(-4*a*c+b^2)^(1/2)*2^(1/2)/((b+(-4*a*c+b^2)^(1
/2))*c)^(1/2)*arctan(c*x*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2))-1/2/a^2*c/(-4
*a*c+b^2)^(1/2)*2^(1/2)/((b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctan(c*x*2^(1/2)/((b+
(-4*a*c+b^2)^(1/2))*c)^(1/2))*b^2-1/2/a^2*c*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^
(1/2)*arctanh(c*x*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*b+1/a*c^2/(-4*a*c+b
^2)^(1/2)*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2)*arctanh(c*x*2^(1/2)/((-b+(-4
*a*c+b^2)^(1/2))*c)^(1/2))-1/2/a^2*c/(-4*a*c+b^2)^(1/2)*2^(1/2)/((-b+(-4*a*c+b^2
)^(1/2))*c)^(1/2)*arctanh(c*x*2^(1/2)/((-b+(-4*a*c+b^2)^(1/2))*c)^(1/2))*b^2-1/3
/a/x^3+b/a^2/x

_______________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \[ \frac{\int \frac{b c x^{2} + b^{2} - a c}{c x^{4} + b x^{2} + a}\,{d x}}{a^{2}} + \frac{3 \, b x^{2} - a}{3 \, a^{2} x^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(1/((c*x^4 + b*x^2 + a)*x^4),x, algorithm="maxima")

[Out]

integrate((b*c*x^2 + b^2 - a*c)/(c*x^4 + b*x^2 + a), x)/a^2 + 1/3*(3*b*x^2 - a)/
(a^2*x^3)

_______________________________________________________________________________________

Fricas [A]  time = 0.286602, size = 2190, normalized size = 11.17 \[ \text{result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(1/((c*x^4 + b*x^2 + a)*x^4),x, algorithm="fricas")

[Out]

-1/6*(3*sqrt(1/2)*a^2*x^3*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 + (a^5*b^2 - 4*a^
6*c)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(a^10*b^2
 - 4*a^11*c)))/(a^5*b^2 - 4*a^6*c))*log(2*(b^4*c^3 - 3*a*b^2*c^4 + a^2*c^5)*x +
sqrt(1/2)*(b^8 - 8*a*b^6*c + 20*a^2*b^4*c^2 - 17*a^3*b^2*c^3 + 4*a^4*c^4 - (a^5*
b^5 - 7*a^6*b^3*c + 12*a^7*b*c^2)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3
*b^2*c^3 + a^4*c^4)/(a^10*b^2 - 4*a^11*c)))*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2
 + (a^5*b^2 - 4*a^6*c)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 +
a^4*c^4)/(a^10*b^2 - 4*a^11*c)))/(a^5*b^2 - 4*a^6*c))) - 3*sqrt(1/2)*a^2*x^3*sqr
t(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 + (a^5*b^2 - 4*a^6*c)*sqrt((b^8 - 6*a*b^6*c +
11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(a^10*b^2 - 4*a^11*c)))/(a^5*b^2 - 4*a
^6*c))*log(2*(b^4*c^3 - 3*a*b^2*c^4 + a^2*c^5)*x - sqrt(1/2)*(b^8 - 8*a*b^6*c +
20*a^2*b^4*c^2 - 17*a^3*b^2*c^3 + 4*a^4*c^4 - (a^5*b^5 - 7*a^6*b^3*c + 12*a^7*b*
c^2)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(a^10*b^2
 - 4*a^11*c)))*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 + (a^5*b^2 - 4*a^6*c)*sqrt((
b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(a^10*b^2 - 4*a^11*c
)))/(a^5*b^2 - 4*a^6*c))) + 3*sqrt(1/2)*a^2*x^3*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b
*c^2 - (a^5*b^2 - 4*a^6*c)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^
3 + a^4*c^4)/(a^10*b^2 - 4*a^11*c)))/(a^5*b^2 - 4*a^6*c))*log(2*(b^4*c^3 - 3*a*b
^2*c^4 + a^2*c^5)*x + sqrt(1/2)*(b^8 - 8*a*b^6*c + 20*a^2*b^4*c^2 - 17*a^3*b^2*c
^3 + 4*a^4*c^4 + (a^5*b^5 - 7*a^6*b^3*c + 12*a^7*b*c^2)*sqrt((b^8 - 6*a*b^6*c +
11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(a^10*b^2 - 4*a^11*c)))*sqrt(-(b^5 - 5
*a*b^3*c + 5*a^2*b*c^2 - (a^5*b^2 - 4*a^6*c)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*
c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(a^10*b^2 - 4*a^11*c)))/(a^5*b^2 - 4*a^6*c))) - 3
*sqrt(1/2)*a^2*x^3*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 - (a^5*b^2 - 4*a^6*c)*sq
rt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4)/(a^10*b^2 - 4*a^
11*c)))/(a^5*b^2 - 4*a^6*c))*log(2*(b^4*c^3 - 3*a*b^2*c^4 + a^2*c^5)*x - sqrt(1/
2)*(b^8 - 8*a*b^6*c + 20*a^2*b^4*c^2 - 17*a^3*b^2*c^3 + 4*a^4*c^4 + (a^5*b^5 - 7
*a^6*b^3*c + 12*a^7*b*c^2)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^
3 + a^4*c^4)/(a^10*b^2 - 4*a^11*c)))*sqrt(-(b^5 - 5*a*b^3*c + 5*a^2*b*c^2 - (a^5
*b^2 - 4*a^6*c)*sqrt((b^8 - 6*a*b^6*c + 11*a^2*b^4*c^2 - 6*a^3*b^2*c^3 + a^4*c^4
)/(a^10*b^2 - 4*a^11*c)))/(a^5*b^2 - 4*a^6*c))) - 6*b*x^2 + 2*a)/(a^2*x^3)

_______________________________________________________________________________________

Sympy [A]  time = 8.52191, size = 211, normalized size = 1.08 \[ \operatorname{RootSum}{\left (t^{4} \left (256 a^{7} c^{2} - 128 a^{6} b^{2} c + 16 a^{5} b^{4}\right ) + t^{2} \left (- 80 a^{3} b c^{3} + 100 a^{2} b^{3} c^{2} - 36 a b^{5} c + 4 b^{7}\right ) + c^{5}, \left ( t \mapsto t \log{\left (x + \frac{- 96 t^{3} a^{7} b c^{2} + 56 t^{3} a^{6} b^{3} c - 8 t^{3} a^{5} b^{5} - 4 t a^{4} c^{4} + 32 t a^{3} b^{2} c^{3} - 40 t a^{2} b^{4} c^{2} + 16 t a b^{6} c - 2 t b^{8}}{a^{2} c^{5} - 3 a b^{2} c^{4} + b^{4} c^{3}} \right )} \right )\right )} + \frac{- a + 3 b x^{2}}{3 a^{2} x^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(1/x**4/(c*x**4+b*x**2+a),x)

[Out]

RootSum(_t**4*(256*a**7*c**2 - 128*a**6*b**2*c + 16*a**5*b**4) + _t**2*(-80*a**3
*b*c**3 + 100*a**2*b**3*c**2 - 36*a*b**5*c + 4*b**7) + c**5, Lambda(_t, _t*log(x
 + (-96*_t**3*a**7*b*c**2 + 56*_t**3*a**6*b**3*c - 8*_t**3*a**5*b**5 - 4*_t*a**4
*c**4 + 32*_t*a**3*b**2*c**3 - 40*_t*a**2*b**4*c**2 + 16*_t*a*b**6*c - 2*_t*b**8
)/(a**2*c**5 - 3*a*b**2*c**4 + b**4*c**3)))) + (-a + 3*b*x**2)/(3*a**2*x**3)

_______________________________________________________________________________________

GIAC/XCAS [A]  time = 0.796963, size = 1, normalized size = 0.01 \[ \mathit{Done} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]  integrate(1/((c*x^4 + b*x^2 + a)*x^4),x, algorithm="giac")

[Out]

Done